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ABSTRACT
With the rapid growth of chemical patents, there is increasing de-
mand for automated extraction of information relating to chemical
compounds and their synthesis from patents. Although there are
existing models that can extract chemical entities and reaction
events, these have significant practical limitations. First, they typi-
cally cannot process a full patent document, targeting short texts
containing only reaction descriptions. Second, they neglect reaction
texts where steps in the reaction are elided through reference to
other reactions. To address these issues, we propose an integrated
and comprehensive chemical reaction extraction system consisting
of a pipeline of components for reaction detection, chemical named
entity recognition, event extraction, anaphora resolution, reaction
reference resolution, and table classification.
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1 INTRODUCTION
The discovery of new chemical compounds is a key driver of the
chemistry and pharmaceutical industries, inter alia. Patents serve
as a critical source of information about new chemical compounds,
providing timely and comprehensive information about new chem-
ical compounds [1, 2]. Despite the significant commercial and re-
search value of the information in patents, manual effort is still the
primary mechanism for extracting and organizing this information.
This is costly, considering the large volume of patents available
[11]. Development of automatic natural language processing (NLP)
systems for chemical patents, which aim to convert text corpora
into structured knowledge about chemical compounds, has become
a focus of recent research [9, 10].

In this study we consider a system that focuses on chemical reac-
tion processes described in chemical patents. A chemical reaction
is a process leading to the transformation of one set of chemical
substances to another. A full reaction requires at least the starting
materials and the final product to be defined, and usually includes
information such as reagents, catalysts, and experiment conditions
to further describe the reaction. Our overarching objective is to
enable the automatic identification of each reaction described in a
complete patent document, and to fully characterize each reaction
by extracting each relevant component.

2 SYSTEM OVERVIEW
To perform end-to-end extraction of chemical reactions from full
patents, we define a pipeline of interconnected NLP tasks.

Reaction snippet detection: We first need to locate reaction de-
scriptions in a patent, for processing in downstream tasks. We
formulate this task as a paragraph-level sequence tagging problem,
where a patent is given as a sequence of paragraphs and the task
is to detect a span of contiguous paragraphs describing a single
chemical reaction. We train a BiLSTM-CRF model for this task on
the dataset described in [13] using the same experimental settings.

Chemical NER:. Using the reaction snippets extracted from full
patents, the task to identify chemical entities and their roles in a
chemical reaction can be formulated as named entity recognition
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(NER). We train a BERT-CRF model for this task using the annota-
tion schema and data for chemical NER task detailed in [7, 8].

Event extraction: A chemical reaction usually consists of an or-
dered sequence of event steps that either transforms a starting mate-
rial into a product or just purifies or isolates a chemical substance.
An event is characterised by (a) a trigger word that flags its occur-
rence, and (b) a relation connecting the trigger word and chemical
entities involved in the event. For this task, we use a BERT-CRF
model to extract trigger words and chemical entities from snippets
and borrow ideas from the span-based BERT model in [5]. In this
approach, all pairs of trigger words and entities are enumerated,
BERT is applied to obtain the contextualized representation of each
relevant token, and a classifier decides the nature of the relation
between them using pooling of token representations.

Anaphora resolution: There are rich anaphoric relations between
and within event steps. We consider two main types of anaphoric
relations defined in [6]: coreference, where two mentions refer
to the same entity, and bridging, linking a chemical compound
and its source. We decompose this task into (a) anaphor mention
detection and (b) relation classification. We use a BERT-CRF model
for mention detection. For relation classification, we adopt the
span-based BERT model proposed in [4].

Reaction reference resolution: So far, we have assumed that a re-
action snippet contains the complete information of a chemical
reaction. However, chemical patents often detail several similar
compounds that have a common substructure and can be synthe-
sized in analogous ways. They contain many references connecting
descriptions of similar chemical reactions, to avoid redundancy in
describing common reaction conditions. This leads to the problem
of identifying references from an incomplete snippet to others. Here,
we use the model proposed in [12], first determining if a snippet
has others that refer to it, and then enumerating possible reference
pairs of snippets and classifying them.

Table classification: Apart from text paragraphs, a large amount
of information in patents is represented in tables and images. Here,
we focus on identifying tables containing chemical reaction proper-
ties such as starting materials, products, yields, etc. To differentiate
tables of interest from others, we train a Table-BERT classifier [3]
on the ChemTables data [14]. The model first concatenates all to-
kens within all cells from the table and then takes the flattened
table as input. For tables classified into reaction properties category,
we further extract reactions based on the table header if there are
sufficient information describing reactions.

3 DISCUSSION
We have introduced the essential requirements for building a com-
prehensive chemical reaction extraction system covering a wide
range of tasks. We have proposed an initial approach for each step
leveraging existing data resources from the ChEMU shared tasks,
illustrating how the individual tasks can be brought together into a
coherent whole. This integration addresses two key limitations of
previous studies: our system can process full patent documents di-
rectly, and we can find the snippets an incomplete reaction snippet
refers to. We leave performance evaluation of individual steps, as

well as the complete system, to a more in-depth presentation. In the
future, we plan to further develop this framework to extract com-
plete reaction information by incorporating inference over reaction
references, and to extend the scope of our system to handle images
and chemical structures. Opportunities also exist to explore joint
modelling or multi-task learning across the constituent tasks in this
pipeline, for instance coupling NER and anaphora resolution.
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