Neural Disease Normalization with Graph Embeddings

Dhruba Pujary^{1*} Camilo Thorne² Wilker Aziz¹

¹ UvA (Amsterdam, Netherlands)

² Elsevier (Frankfurt, Germany)

* Email: druv0220gmail.com (main author)

Al Meetup, Frankfurt, 6.11.2019

Pujary, Thorne & Aziz (Elsevier & UvA)

Deep Disease Normalization

Motivation

- To semantically enrich biomedical text we need to detect entities (NER), and resolve them (EL) to a canonical name
- Canonical names, a.k.a. concepts, are defined in gold repositories such as:

 \Rightarrow thesauri, databases, taxonomies, knowledge graphs

- Systems used in practice are often based on dictionaries/TFIDF: ⇒ high precision, low recall
- Big advances in NER and EL for other domains

Motivation

- To semantically enrich biomedical text we need to detect entities (NER), and resolve them (EL) to a canonical name
- Canonical names, a.k.a. concepts, are defined in gold repositories such as:

 \Rightarrow thesauri, databases, taxonomies, knowledge graphs

- Systems used in practice are often based on dictionaries/TFIDF: ⇒ high precision, low recall
- Big advances in NER and EL for other domains

Q: Can we use DL and **graph embeddings** to detect and resolve **diseases**?

Example – NCBI Corpus [2] & MeSH[®] Taxonomy [7]

Identification of APC2, a homologue of the [adenomatous polyposis coli tumour]_{D011125} suppressor.

MeSH Heading	Adenomatous Polyposis Coli
Scope Note	A polyposis syndrome due to an autosomal dominant
	mutation of the APC
	genes (GENES, APC) on CHROMOSOME 5
Tree Numbers	C04.557.470.035.215.100
Entry Terms	Polyposis Syndrome, Familial

Dataset Statistics

• NCBI corpus:

Split	$PubMed^{\mathbb{R}}$	Total	Unique	Unique	Tokens
	abstracts	mentions	mentions	concept IDs	
Training	592	5,134	1,691	657	136,088
Validation	100	787	363	173	23,969
Test	100	960	424	201	24,497

- MeSH[®] taxonomy (disease branch):
 - ▷ 10,932 diseases/conditions (tree nodes)
 - ▷ approx. 10,000 scope notes comprising a 10-20 tokens
 - ▷ approx. 100,000 200,000 tokens

Disease NER - biLSTM-CRF Model I

Lample et al. [5, 4, 10]

Disease NER – biLSTM-CRF Model II

Ma and Hovy [8, 10]

Disease NER – biLSTM-CRF Model III

EL Model

▷ in a nutshell:

embed mention + embed $MeSH^{(R)}$ concept + softmax layer

EL - node2vec [3] Embeddings

Node2vec embedding process

EL - node2vec [3] Embeddings

estimate: $p(d_i | \mathbf{m}, \mathbf{d_i}) \propto \exp(\mathbf{m^T W d_i}))$

type I tree structure only type II tree structure + lexicalization (scope note embedding)

EL – GCN [1] Embeddings

GCN

EL – GCN [1] Embeddings

$$\mathbf{h}_{d}^{(j+1)} = \sigma \left(\sum_{d' \in \Omega(d)} \mathbf{W}^{(j)} \mathbf{h}_{d'}^{(j)} + \mathbf{b}^{(j)} \right)$$

EL – GCN [1] Embeddings

$$\mathbf{h}_{d}^{(j+1)} = \sigma \bigg(\sum_{d' \in \Omega(d)} \mathbf{W}^{(j)} \mathbf{h}_{d'}^{(j)} + \mathbf{b}^{(j)} \bigg)$$

estimate: $p(d_i|\mathbf{m}) \propto \exp(\mathbf{m}^{\mathbf{T}}g(d_i;\theta))$

Pujary, Thorne & Aziz (Elsevier & UvA)

Deep Disease Normalization

NER & EL – Results

Model	Pre	Rec	F1	Val. F1
Lample et al.	0.824 ± 0.022	0.742 ± 0.019	0.781 ± 0.003	0.805 ± 0.007
Ma and Hovy	0.823 ± 0.011	0.776 ± 0.023	0.799 ± 0.012	0.792 ± 0.005
bioELMo	$\textbf{0.878} \pm \textbf{0.003}$	$\textbf{0.856} \pm \textbf{0.005}$	$\textbf{0.867} \pm \textbf{0.002}$	$\textbf{0.884} \pm \textbf{0.001}$
bioELMo + 2-layer $biLSTM$	0.857 ± 0.006	0.873 ± 0.005	0.865 ± 0.005	0.884 ± 0.001
Lample et al.** [4]	0.875**	0.836**	0.844**	-

Model	MRR	F1	Pre	Pre@30	Val. MRR
bioELMo (S.N.)	0.748 ± 0.002	0.715 ± 0.004	0.715 ± 0.002	0.844 ± 0.004	0.791 ± 0.001
node2vec I	0.749 ± 0.002	0.718 ± 0.004	0.720 ± 0.004	0.819 ± 0.006	0.800 ± 0.003
node2vec II	$\textbf{0.757} \pm \textbf{0.001}$	$\textbf{0.721} \pm \textbf{0.004}$	$\textbf{0.724} \pm \textbf{0.001}$	$\textbf{0.842} \pm \textbf{0.004}$	$\textbf{0.804} \pm \textbf{0.006}$
GCN	0.744 ± 0.006	0.710 ± 0.008	0.710 ± 0.007	0.831 ± 0.005	0.803 ± 0.007
DNorm** [6]		0.782**	- 15	-	(-) -
NormCo** [11]	-	0.840**	0.878**	-	

(where: MRR =
$$\frac{1}{|E|} \sum_{i=1}^{|E|} \frac{1}{\mathsf{rank}_i}$$
)

EL – Embedding Visualization I

Pujary, Thorne & Aziz (Elsevier & UvA)

Deep Disease Normalization

EL – Embedding Visualization II

EL – Embedding Visualization III

T-SNE GCN

Main Errors

- Multi-token entities only partially detected: in sporadic T-PLL only the head T-PLL is detected
- EL models confuse diseases with their MeSH[®] neighbors: D016399 Lymphoma, T-Cell is confused for D015458 Leukemia, T-Cell, with which it shares an ancestor
- EL models resolve correctly the first instance, but return a neighbour after: in

Occasional missense mutations in ATM were also found in tumour DNA from patients with [B-cell non-Hodgkins lymphomas]_{D016393} ([B-NHL]_{D008228}) and a [B-NHL]_{D018239} cell line.

D016393 is correct but B-NHL is mapped to D008228 (its child) and then to D018239 (another form of cancer)

MTL – Model & Results

MTL – Model & Results

1 A 4	NER			EL	
Model	Pre	Rec	F1	MRR	Pre@30
NER & GCN	$\textbf{0.880} \pm \textbf{0.003}$	$\textbf{0.872} \pm \textbf{0.008}$	$\textbf{0.876} \pm \textbf{0.003}$	$\textbf{0.747} \pm \textbf{0.003}$	$\textbf{0.816} \pm \textbf{0.006}$
NER	0.875 ± 0.006	0.869 ± 0.001	0.872 ± 0.003	-	-
GCN	-	-	-	0.745 ± 0.001	0.816 ± 0.001

Conclusions

- Adapted biLSTM-CRFs to the NCBI corpus (NER)
- Adapted graph embeddings (GCN and node2vec) that exploit both MeSH[®]'s hierarchical structure and the description of diseases (EL)
- Ocombined NER and EL models in a MTL setting
- Main findings:
 - EL node lexicalization improves over structural or lexical embeddings
 - NER bioELMO leads to large gains for NER MTL leads to state-of-the-art performance for NER
- S Further work:
 - incorporate EL optimizations studied in [11] and [6]
 - enlarge target taxonomy by linking it to large knowledge graphs such as DBpedia

Thank you!

References I

- Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima'an. Graph convolutional encoders for syntax-aware neural machine translation. *CoRR*, abs/1704.04675, 2017.
- [2] Rezarta Islamaj Dogan and Zhiyong Lu. An inference method for disease name normalization. In AAAI Fall Symposium: Information Retrieval and Knowledge Discovery in Biomedical Text, 2012.
- [3] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. CoRR, abs/1607.00653, 2016.
- [4] Maryam Habibi, Leon Weber, Mariana Neves, David Luis Wiegandt, and Ulf Leser. Deep learning with word embeddings improves biomedical named entity recognition. *Bioinformatics*, 33(14):i37–i48, 2017.
- [5] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. Neural architectures for named entity recognition. *CoRR*, abs/1603.01360, 2016.

References II

- [6] Robert Leaman, Rezarta Islamaj Doğan, and Zhiyong Lu. DNorm: disease name normalization with pairwise learning to rank. *Bioinformatics*, 29(22):2909–2917, 2013.
- [7] C.E. Lipscomb. Medical subject headings (MeSH). Bull Medical Library Association, 88(3):265–266, 2000.
- [8] Xuezhe Ma and Eduard H. Hovy. End-to-end sequence labeling via Bi-directional LSTM-CNNs-CRF. *CoRR*, abs/1603.01354, 2016.
- [9] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In *Proceedings of NAACL 2018*, 2018.
- [10] S. Pyysalo, F. Ginter, H. Moen, T. Salakoski, and S. Ananiadou. Distributional semantics resources for biomedical text processing. In *Proceedings of LBM 2013*, 2013.
- [11] Dustin Wright, Yannis Katsis, Raghav Mehta, and Chun-Nan Hsu. NormCo: Deep disease normalization for biomedical knowledge base construction. In Proceedings of AKBC 2019, 2019.

Appendix - CRFs vs. biLSTM-CRFs

▷ Traditional linear-chain CRFs estimate:

$$p(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) \propto \prod_{i=1}^{n} \exp(\sum_{k=1}^{K} \theta_k f_k(y_i, y_{i+1}, \mathbf{x}_{1:n}))$$

▷ biLSTM-CRFs estimate:

$$p(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) \propto \exp(s(\mathbf{x}_{1:n},\mathbf{y}_{1:n})) = \exp(\sum_{i=0}^{n} A_{y_i,y_{i+1}} + \sum_{i=1}^{n} P_{x_i,y_i})$$

Appendix – Hyperparameters/Training

Common: - ADAM with 10^{-3} learning rate

- 0.5 dropout regularization
- split the abstracts into sentences using NLTK
 (https://www.nltk.org/)
- used whitespace tokenization
- 200-dim *word2vec* embeddings and 1024-dim bioELMo embeddings
- NER: learnt 60-dim character embeddings
- *node2vec*: 1024-dim MeSH[®] node embeddings trained using *node2vec* for 100 epochs
 - GCN: 1024-dim EL models trained for 500 epochs
 - stacked 2 GCN layers with 2048 hidden units and 1024 output units

